

 EXAMINING FILES Pg. 1

Linux Essentials – Module 2
 EXAMINING FILES

MODULE OBJECTIVE

$Understand the directory structure, navigate between directories, view file
contents

 LESSON OBJECTIVES

C Define “UNIX File System”, “File Hierarchy” and “file system”

C Use the commands to navigate the file systems and to list files and directories

C Examine text file contents with the commands “head”, “tail”, “cat”, “grep”, “more”
 and “file”

 EXAMINING FILES Pg. 2

OVERVIEW

 What is a File System? A file system is the layout of files on the hard disk. It let's
UNIX know which parts of the disk are already used, and which aren't. (It's like an index
to a large filing system or a card catalog to a library.) The way this organization is
structured is called a File Hierarchy. There are several key functions performed by
UNIX file systems:

 Efficiently use the space available on your hard drive.

 Catalog all the files on your hard drive so that retrieval is fast and reliable.

Provide methods for performing basic file operations, such as delete, rename,
copy, and move.

Provide a data structure that allows the computer to boot off the file system.

 What is a file? That depends on how you look at it. In UNIX, everything is a file.
Files you are familiar with are text, data, and programs, but your hard drive is also a file,
your serial and parallel ports, even the bit bucket.

 The OS views the file as nothing more that a sequence of bytes on the disk.

A program may view the file as the text for a word processing document or as the
records of a database.

You probably view a file as a collection of data or a program that can be called by
name.

DIRECTORY STRUCTURE

Linux/UNIX use a common directory structure, with a main directory (root) and then
several subdirectories. As opposed to WINDOWS(DOS)There are two important
differences. First, while DOS uses the backslash "\", Unix uses a forward slash "/". Also,
while DOS differentiates disk (hard, floppy, or virtual) by letters (e.g., A: , B:, C:, etc.),
Unix does not. Instead, Unix deals in "file systems." This is really transparent to the
user. The end result is that all Unix pathnames merely begin with a leading / and do not
have a drive letter designator to prefix it.

root /

dev

bin news

bin etc lib tmp usr home

user1

mail man local contrib

passwd shutdow n

ls passwdcp

manv i

binbin

user2 user3 user4

directory
file UNIX FILE TREE

(UNIXTREE)

 EXAMINING FILES Pg. 3

 EXAMINING FILES Pg. 4

FILE SYSTEM HIERARCHY

The Linux File System (or File Hierarchy) includes file systems, directories, and sub-
directories. The Linux File System starts with a top level of “/” (also called root), then
branches with directories and sub-directories (normally shown as an inverted tree).
A Linux file system resides on a storage device (hard disk or a partition of a hard
disk).

Every Linux/UNIX system must have at least one file system for root and typically have
at least a few other file systems.The top level of the Linux/UNIX file structure (/) is
known as the root directory and always has a certain set of sub-directories, including
sbin, dev, etc, lib, tmp, and home.

Directories are hierarchically organized. That is a directory has a parent directory
“above” and may also have subdirectories “below” (child directories). Similarly, each
subdirectory can contain other files and also can have more subdirectories. Because
they are hierarchically organized, directories provide a logical way to organize files. With
the help of directories, you can organize your files into manageable, logically related
groups. For example, if you have several files for each of several different projects, you
can create a directory for each project and store all the files for each project in the
appropriate directory.

The following is a brief description of the above files:

/dev Holds the device drivers. Device drivers allow the terminal to
display data, the keyboard to enter data, and the disk to store data.
Although UNIX looks at these drivers as ordinary files, no data is
stored in these files. Rather they act as a pathway to the device.

 /bin, /sbin Holds the executable (C-compiled) programs necessary for basic

Linux system operation and file manipulation. In early UNIX the bin
directory held all executable binaries. As more and more binaries
were developed, the bin directory was split into multiple parts (/bin,
/usr/bin, /usr/local/bin, etc).

 /etc Holds the system configuration files and system administration

commands. System administration can be complex. Managing
user accounts, file systems, security, device drivers, hardware
configuration, and more.

 /lib A central storage place for function and procedural libraries. These

specific executables are included with specific programs, allowing
features and capabilities otherwise unavailable. The idea is that if
programs want to include certain features, they can just reference
that utility in the UNIX library.

 EXAMINING FILES Pg. 5

 /var Contains files that may dynamically change size, ie. mail and
syslog files that are constantly changing in size. Contains the user
scratch

 space /var/tmp.

 /home This contains one sub-directory for each user account. Every user on the

UNIX system should have his or her own account. You have
complete control of your account and are responsible for files and
sub-directories created in your account. Normally, home directories
contain only personal files and programs, not applications or data
accessed by other users. This is because of the permission settings
on home directories.

 /tmp This is a scratch space for the UNIX system. User scratch space is
 located in /var/tmp.

FILE SYSTEM SPACE

Before a file system can be recognized and accessed by Linux, it must be mounted to a
mount point (a directory name). This is usually done automatically at system boot time
and is controlled by your System Administrator.

It is important for users to realize that file systems reside on storage devices that
contain limited space. If you are going to download large files, develop new programs
or retrieve files stored on tape, you have a responsibility to monitor the system and
prevent any action that would run the system out of space.

Using the command “df” will display the file systems that are presently mounted, size in
kbytes, used space, available space, percent used, and the mount point. This display
will vary from system to system depending on what size harddrives are in use, what
version of Linux is being run, etc…

$ df This command will display the file systems presently mounted.

Filesystem 1k-blocks used available %used Mounted on

 /dev/sda2 8064304 2885344 4769304 38% /
 /dev/sda1 101089 64982 80888 16% /boot
 /dev/sda5 101089 6973 88897 8% /home
 none 250432 0 250432 0% /dev/shm

-or-

It is important to note that the mount point of a file system (the directory name) is
located on the root file system. You must make sure that the file system you need is
listed in the output of the command “df” or you will be accessing the root file system.

 EXAMINING FILES Pg. 6

For example, the “/home” file system in our first display was only 3% full and could
easily more data. However, if the “/home” file system was not mounted (ie. did not
show up in the output of the df command), the “/home” directory would still exist.
Writing the data into the “/home” directory on the root file system could exceed the
available space on the root file system (/) and cause the entire system to be unavailable
to other users.

UNIX File System or File Hierarchy

 These two phrases are interchangeable, they refer to the overall layout of
individual filesystems, directories, and files. These directories usually contain more
directories; thus, the typical home directory develops a branching tree structure. At the
top of the inverted tree structure is the root directory, represented in path names as “/”.

 The phrase “file system”, when in lower case, will usually refer to a single file
system within the File Hierarchy. File systems are created by the Operating System
when it is loaded and can also be created by the System Administrator, to configure
unused disk space.

 Assuming /home was created as a file system, /home is then a directory and a
file system. /home/leslie is a directory in the /home filesystem.

 EXAMINING FILES Pg. 7

 EXAMINING FILES Pg. 8

Specifying Files and Directories

When you log onto the system you are positioned within the file hierarchy in your in your
home directory – your starting directory, which is thus your initial “current working
directory” . You can see what that directory is via ‘echo $HOME’. In the course of your
work however you are likely to navigate the file system and leave your home directory.
Wherever you land at any given point in time that then becomes your new current
working directory. This position (directory) can be listed with the pwd command at any
time.

Command: pwd Reports the present working directory or current directory.

$ pwd

When using commands to work with files in your current working directory you can refer
to them just by their file names. But when referring to directories and files outside your
current working directory, you must use path names, which tell Linux how to get to the
appropriate directory. The exception would be if the files are executables (commands,
scripts, programs, …) that may exist in some directory that is included in your “search
path” (The setting of your PATH variable to be discussed later).

Absolute vs. Relative path

Pathnames are pointers/directions to a filenames by using absolute path (starting at
the top of the File Hierarchy), or relative path (starting at your current location in the
File Hierarchy). Linux commands will accept absolute pathnames, relative pathnames,
or simple filenames, as identifiers to locate files or commands.

Absolute path names specify the path to a directory or file, starting from the root
directory at the top of the inverted tree structure. The root directory is represented by a
slash (/). The path consists of a sequential list of directories, separated by slashes,
leading to the directory or file you want to specify. The last name in the path is the
directory or file you are pointing to.

ABSOLUTE pathname:

 * gives the complete path of the location of a file or directory.
 * always starts at the top of the UNIX Hierarchy (root)
 * always starts with a leading /
 * not dependant on your present location
 * always unique across the UNIX File System.

Here is an example of an absolute path, displayed with the pwd command:

 $ pwd
 /home/engineers/leslie

 This specifies the location of the current directory, leslie, by starting from the root
and working down.

 The following figure shows the absolute path names for various directories and
files in a typical directory structure:

 EXAMINING FILES Pg. 9

 EXAMINING FILES Pg. 10

Relative Path Names

 You can use a relative path name as a shortcut to the location of files and
directories. Relative path names specify directories and files starting from your current
working directory (instead of the root directory).

RELATIVE pathname:

 * always starts at your current location
 * will never start with a /
 * unique relative to your current location
 * often shorter than an absolute path

This relative path name ... Means

 . (Dot) The current directory

 .. (Dot, Dot) The parent directory (the directory above the current
directory).

 ../.. Two directories above the current directory

 directory_name The directory below the current directory

DOT "." and DOT DOT ".." DIRECTORIES

Whenever a directory is created, there are always two entries present in that directory,
dot (.) and dot dot (..). The (.) is synonymous with the pathname of the present
working directory and can be used in its place. The (..) is synonymous with the
pathname of the parent directory and can also be used in its place.

Dot "." Directory

 ./application name

The dot in front of the application name is a relative address that will tell Linux to search
only the current directory for this program.

Dot-Dot ".." Directory

The dot-dot can be used as a relative address for the parent of the present working
directory when moving through the Linux File System. In the case of the root directory (
/), there is no parent directory and the dot (.) and dot dot (..) paths both refer to the
root directory (/).

 EXAMINING FILES Pg. 11

If you are in the directory /home:

.. represents / (or root)
../.. also represents /
../etc represents /etc
../etc/file1 represents /etc/file1

If you are currently in the directory /home/user3:

.. represents /home
../.. represents /
../user2 represents /home/user2
../user2/file1 represents /home/user2/file1

The figure on the next page displays relative path names for various directories and
files starting from the current directory, /home/engineers/leslie.

You will use absolute or relative addresses anytime you reference a file or directory.
Quite commonly you will reference directories in this was as you move through the file
system structure with the cd command (next topic).

You will also use absolute or relative references for file operations:

 $ ls /home
 $ ls ..
 $ ls ../sally
 $ ls ../../home

Or to read/run a script file

 $ runscript.sh
 $./runscript.sh (same as above actually)
 $ /programs/runscript.sh
 $../../scripts/runscript.sh

It may appear confusing at first but as you work through the course the idea will gel.

 EXAMINING FILES Pg. 12

 EXAMINING FILES Pg. 13

Changing Directories

To change your present working directory, use the cd command.
The format of the cd command is:

cd directoryname

Command: cd Change current working directory

$ cd /home

Using the absolute pathname the command changes the current directory to "home"
in the "root /" directory.

$ cd student1

Using the relative pathname the command changes the current directory to the
"student1" sub-directory of the present working directory.

For example, if your home directory was /home/leslie and you ran the “cd projects”
command, pwd would display the following:

 $ pwd
 /home/leslie
 $ cd projects
 $ pwd
 /home/leslie/projects

 To change into the directory new under projects:

 $ cd new
 $ pwd
 /home/leslie/projects/new

Remember that “..” is the relative path name for the parent directory of your current
working directory. So to move up one level, back to projects:

 $ cd ..
 $ pwd
 /home/leslie/projects

 To return to your home directory from anywhere in the UNIX File Hierarchy, just
type “cd”.

Example:

 $ cd
 $ pwd
 /home/leslie

 The following figure illustrates how various cd commands change your current
working directory. The example assumes you’re starting at the directory

/home/leslie/projects, and that your home directory is /home/leslie:

Once you have reached your destination directory using the cd command, you may
want to know what files and sub-directories are in that directory. This can be done with
the “ ls “ command. NOTE: Files and sub-directories can be listed from any location on
the system by using the “absolute path name”, or clever relative addressing.

 EXAMINING FILES Pg. 14

 EXAMINING FILES Pg. 15

Listing Files and Directories

Command: ls Lists the files found in a directory and sub-directories.

Example: ls

 data data_purge file1 file2 file3

Example: ls /home/student1

 data data_purge file1 file2 file3

The ls command will list only those files that do not have a leading dot (.) as part of
the file name. To list all files, including those with a leading dot, use “ls -a”.

Example: ls -a

 profile .bashrc data data_purge file1 file2 file3

Example: ls -F

 data/ data_purge* file1 file2 file3

The addition of the -F flag places a ' / ' after directory entries, and an ' * ' after
executable programs.

Example: ls -l

drwxr-xr-x 2 student1 class 1024 June 15 10:23 data
 -rwxr-xr-x 1 student1 class 64 May 10 14:10 data_purge
-rw-rw-r-- 1 student1 class 64 May 11 14:12 file1
-rw-rw-r-- 1 student1 class 64 May 11 14:12 file2
-rw-rw-r-- 1 student1 class 64 May 11 14:12 file3

In the above example, the -l flag will provide a long listing. This information will
display the file type (most common are: d=directory, -=regular file, l=soft link), file
permissions, number of hard links, owner, group, size, modification date, and
filename (with a pointer to another file if it is a soft link), the details of which will
come later.

 EXAMINING FILES Pg. 16

COMMAND STRUCTURE

You will find that you use ls (or a variation {alias} thereof – ll) more than any other
command on the system. But let’s digress a moment away from the output and consider
command structure and syntax in Linux - the Linux command syntax is composed of
three basic sections:

command [- { flags }] [arguments]

 Example: ls [-l] [/home/student1/file1]
 ([] are used for explanation only, not in actual command entry)

command The task that you want completed.

flags Flags (aka Switches) allows you to display the results of
the command in various forms.
Flags are specific to a command and most are
preceded by a dash " - ".
Multiple flags can be used together, as long as they do
not conflict.

 Example: ls -lai /home/student1

argument Parameters (directory or filename) to be passed to the
command. Multiple arguments may be passed to a
command

 Example: ls -l file1 file2 file3

We should understand the term “White Space”. This could be a <space>, <tab>, or
<newline> placed in the commandline. The shell will decode the command line (ls -l
file1 file2) as two separate filenames (file1 and file2). If the argument includes white
space, it can be protected with single or double quotes (ls -l ‘file1 file2’). Anyway, as
stated previously, simple filenames can be used with UNIX commands as a form of
relative addressing. For example, “ls file1" will search the present working directory for a
file called file1. Okay, you would have guessed that, but there will be times, when
arguments and their position are more critical.

 EXAMINING FILES Pg. 17

If you look at the ls command man page, you will notice the it has approximately 24+
different options that can be used to produce different display output. For our purposes,
we will show the more commonly used options.

 Command ls List directory contents

 Options -a Do not hide entries starting with a . (dot), usually

entries whose name begin with period (.) Are not
listed

 -l Use a long listing format, giving modes, number of

links, owner, group, size in bytes, time last modified,
and file name.

 -r Reverse order while sorting, to get reverse

(descending) collection or oldest first, as appropriate.

 -t Sort by modification time, (latest first) before sorting

alphabetically.

So for now simple examples: Suppose the current directory is /home/engineers/leslie.
To list the files in the directory above (which is /home/engineers):

 $ ls ..
 arnie leslie sally

 To list the files in a directory immediately below your current directory, simply
enter the directory name. For example, to list the files in the projects directory, below
the current directory /home/engineers/leslie :

 $ ls projects
 $

 EXAMINING FILES Pg. 18

>>> Use UNIX wildcards with the command “ls”.

File Name Shorthand: Wildcard Characters

File naming conventions are quite free in Unix. UNIX has no restriction on the length of
the file name or extension. In fact, you don't need to have extensions in Unix, or you can
have more than one (e.g. nexrad.schedule.fy_04). In essence, the dot (".") is really just
another character in the file name. Thus, the file text. and text are not the same. You
should understand that UNIX is case sensitive. The files Text and text are different
filenames.

These differences in file naming conventions have important ramifications concerning
the user of wild cards. UNIX does use the * (which matches any amount of characters),
, and again UNIX is pretty open-ended as for rules. One example is that a legal UNIX
syntax is *abc*, which would return any file with the string 'abc' in its name.

The wildcard notation is recognized by the various shells rather than being built into the
Linux file mechanism. When a shell sees a filename containing wildcards, it translates it
into a sequence of specific filenames, one after another. This process is sometimes
called filename generation or globbing.

There are three notations for wildcards:

 * (splat) This character denotes any sequence of zero or more

characters.

 ? (question mark)This character denotes a single character.

 [cset] This denotes any single character in the set cset. Three particularly

useful character sets are a-z (all lower case letters), A-Z (all
capital letters), and 0-9 (the decimal digits).

 [!cset] If you put a ! in front of the character set, it ignores any characters

within this set. (Some shells may not support this).

 EXAMINING FILES Pg. 19

The * (splat) Wildcard

 The * wildcard means “any characters, including no characters.” Suppose you
have created the following files:

 $ pwd
 /home/student1
 $ ls
 myfile myfile2 myfile3 unixfile yourfile

To list only the file names beginning with “myfile”, type the following

 $ ls
 myfile myfile2 myfile3 unixfile yourfile
 $ ls myfile*
 myfile myfile2 myfile3

To list file names ending in “file”, type the following

 $ ls
 myfile myfile2 myfile3 unixfile yourfile
 $ ls *file
 myfile unixfile yourfile

The ? (question mark) Wildcard

 The ? Wildcard means “any single character.” The following example will list
only the files that start with myfile and end with a single additional character.

 $ ls
 myfile myfile2 myfile3 unixfile yourfile
 $ ls myfile?
 myfile2 myfile3

 The ? wildcard character matches exactly one character. Thus, myfile didn’t
show up in this listing because it didn’t have another character at the end.

 EXAMINING FILES Pg. 20

Character Set [cset] Defines a class of characters.

 - Defines an inclusive range
 ! Negates the defined class

NOTE: If a hyphen (-) is placed between two characters within brackets, the
character class will be all characters in the ASCII sequence, from the
first character to the last one inclusive.

The following are some more examples of these wildcards:

The wildcard “ * “ will match zero or more characters, except a leading dot.

The command “ls -a” will list all files, including those with a leading dot (.)

$ ls * Result: data data_purge file1 file2 file3
$ ls -a Result: profile .bashrc data data_purge file1 file2 file3
$ ls .* Result: profile .bashrc
$ ls *_pur* Result: data_purge
$ ls *e Result: data_purge
$ ls ????? Result: file1 file2 file3
$ ls dat? Result: data
$ ls data?* Result: data_purge
$ ls .???* Result: .profile .bashrc
$ ls ? Result: ? not found
$ ls [df]* Result: data data_purge file1 file2 file3
$ ls [df]??? Result: data
$ ls file[123] Result: file1 file2 file3
$ ls *[1-3] Result: file1 file2 file3
$ ls [123] Result:

 EXAMINING FILES Pg. 21

And this a good time to remind you that more often than not you will have means to
perform most of your Linux tasks via a graphical interface such as Gnome desktop
utilities. Using Gnome Nautilus (available from a desktop icon) for example you can
navigate the file system and list out files.

 (To get more information on Linux desktop environments it is
suggested at this time to do an internet search on the terms “gnome”, and “kde” ; or get
on a local system and explore the desktop screens, menus, and icons by yourself if you
have not already done so.)

Our next topic is searching for files. This to can be accomplished via a GUI on most
Linux systems:

 EXAMINING FILES Pg. 22

find Command

 Perhaps you don’t know what directories to look in to list out the files you want to
see, you need to find them – enter quite obviously the find command What is find? The
find command recursively descends the directory hierarchy for each path name in
pathname_list (that is, one or more path names) seeking files that match a Boolean
expression (and optionally, if specific take some action with the files found).

The general format for this command is to specify the starting point for a search through
the directory, followed by any actions desired.

The format of the find command is:

 find directory-list [expression]

The following is a partial list of criteria that can be used to form an expression with the
find command.

 -name filename True if filename matches pattern (metacharacters maybe
 used, but should be escaped “\” or quoted “ ”)

 -type c True if file type is c, where c is one of:
 f regular file
 d directory
 l link
 (For other file types, see man 1 find)

 -atime [n,+n,-n] True if file was accessed n, +n, or -n days ago. (Example:

3 = 3 days ago, +3 = 3 days or more, -3 = 3 days or less)

 -ctime [n,+n,-n] True if file was modified, permissions changed or ownership

changed (inode changed) n, +n, or -n days ago. More
inclusive than atime or mtime.

 -mtime [n,+n,-n] True if file was modified n, +n, or -n days ago

 - user name True if file is owned by user name (or uid)

 -exec command {} \; Run the UNIX command on each file matched by find

 EXAMINING FILES Pg. 23

 $ find . -type f -name .profile
 ./.profile

The first example uses relative addressing to search the present working directory (.)
and all subdirectories for a regular file with the name .profile. The result is reported
as a relative address.

 $ find /home/student1 -type f -name .profile
 /home/student1/.profile

The second example uses absolute addressing to search the directory
/home/student1 and all it’s subdirectories for a file called .profile. The result is
reported as an absolute address.

 $ find /home/student1 /home/student2 -name “file*”
 /home/student1/file1
 /home/student2/file_from_awips

This example demonstrates searching multiple directories for a filename that
contains a wildcard character. The quote marks ensure that the wildcard is passed
to the find command for filename expansion, rather than being interpreted by the
shell before being passed to the find command.
To search for multiple files, use the following syntax. (The -o acts as an OR
function.):

 $ find . -name fileA -o -name file1

 EXAMINING FILES Pg. 24

 The following command will search the directory /home/student1 (and all
subdirectories) for files that have “test” as part of the filename. The wildcard “*” is
used as part of the file descriptor. The results are then passed to the braces “{ }”,
where the -exec command will execute the rm command on the contents of the
braces. Note: The user will not actually see the contents of the braces, it’s a shell
thing...

$ find /home/student1 -name "*test*" -exec rm {} \;

In the following example, the find command searches the current directory for all files
that have been modified today only and then does a long list display of those found.

$ find /tmp -mtime -1 -exec ls -l {} \;
-rw-r--r-- 1 root root 1260 Nov 29 16:37 /tmp/file1129a
-rw-r--r-- 1 root root 3780 Nov 29 16:37 /tmp/file1129b

 EXAMINING FILES Pg. 25

Examine Text File Contents

 The ability to view the contents of a file is both basic and necessary. This can be
done with different commands to show different results. In fact these command line
utilities have much much more flexibility than viewing files through a GUI.

 Displaying the contents of text files with the following commands

 File Display the file type
 more Display file contents one screen full at a time
 head Display the first lines of a file
 tail Display the last lines of a file
 cat Display the contents, scrolling to the end of the file

Files come in many different types (text/data, scripts, compiled programs, …) When you
use the ‘ls’ command and the filename does not give you any clues as to the contents
or its format, your best friend is the file command. The command will look at the
contents of a file for you and give you some indication as to its content – the type of file
it is. This may be an important first step before actually looking at a file if you are unsure
what the file contains, because while some file contents can be displayed cleanly,
certain file types will not be friendly if you try to display them with the commands in this
section. For example a data file (eg. ASCII text) can be displayed by these commands
but if you try to display compiled code you terminal session can get messed up.

$ file *
 levels : ASCII text
 data : directory

Viewing with the “more” command

 The “more” command displays the text file’s contents on the screen, one
screenful at a time. If the file contains more lines than are on your screen, “more”
pauses when the screen is full. With a longer file, press <SPACE> to continue looking
at additional screens and press <Q> or <CTRL-C> when you are finished. This will
return you to a command line prompt. You can also press the <ENTER> key to
advance the text a single line at a time.

 $ more .bashrc

 EXAMINING FILES Pg. 26

Displaying the First and Last lines of a file

To see the first lines (10 lines by default) of a file, counting blank lines, use the “head”
command.

 $ head .bashrc

To see the last ten lines (default value) of a file, use the tail command.

 $ tail .bashrc

Both the head and tail commands can use a numeric argument. The following displays
the last 25 lines of a file.

 $ tail -25 .bashrc

Another often used option to the tail command is the “-f “ option. This option allows the
user to monitor the contents of a file as it updates.

 $ tail -f filename.log

Using the cat command will display the contents of a text file, from beginning to end. If
the content is larger than the display window, the output will scroll until the end of the
file is reached. There are control commands (ctrl-s and ctrl-q) to be used to stop and
restart the scrolling output, but few people are fast enough to catch the beginning of the
display.

 $ cat .bash_profile

 EXAMINING FILES Pg. 27

But maybe, we only want to see a small portion of a file, and we are unsure where that
portion may reside within a large file – hey let’s grep it. What is grep? Grep is a general
term for any of a family of Unix tools, including grep, egrep, and fgrep, that perform
repetitive searching tasks. The tools in the grep family are very similar, and all are used
for searching the contents of files for information that matches particular criteria.

You can use the grep (“global regular expression print”) command to search for a text
pattern within a file (grep string filename) or to display the names of files that contain a
specified text pattern (grep -l files-to-be-checked). The grep command looks at each
line of one or more files for a text string that matches a specified pattern. When it finds
a matching text string, it displays the line in which the matching string is found. This
command is useful when you want to search for information in files or directories.

Common flags for the grep command are:

 -i Ignores the case of the letters in the pattern

 -l List filenames of files that match pattern only

 -n Include line numbers in output

 -v List the lines that do not match the pattern

In the following example, grep “alias” .bashrc will search the file .bashrc for lines
containing the character string ‘alias’ (in this case we enclosed the string in double
quotes as it’s a reserved worg – a Linux command, but for most strings this not
necessary. This is the simplest form of the grep command.

$ grep “alias” .bashrc
alias rm='rm -i'
alias cp='cp -i'
alias mv='mv -i'

 EXAMINING FILES Pg. 28

In the following example, grep -l test /etc/* will search every file in the /etc
directory for the text string 'test'. The -l designates that only the filenames of files that
contain the text string 'test' are displayed, assuming you have access permission to
these files.

 $ grep -l test /etc/*
 /etc/#update
 /etc/bootptab
 /etc/brc
 grep: can't open /etc/class

 In the following example, grep -n term ~/.profile will search the file ~/.profile for
'term' and return the line and line number of any matches.

 $ grep -n term ~/.profile
 6 : # Set up the terminal

 In the following example, grep -i term ~/.profile will search the file ~/.profile for
the text string ‘term’, ignoring upper and lower case. Both ‘terminal’ and ‘TERM’ are
matches for the specified pattern.

 $ grep -i term ~/.profile
 # Set up the terminal
 if [“TERM” = “”]

 In the following example, grep -i term ~/.profile | grep -v if will search the
file ~/.profile for uppercase or lowercase ‘term’ (and any combination of upper and
lowercase “term”). Any matches are sent to standard out, which is piped to the
standard input of the next grep command. This command discards any lines that
contain the character string “if” then sends the output to standard out (in this case the
terminal).

 $ grep -i term ~/.profile | grep -v if
 # Set up the terminal

 EXAMINING FILES Pg. 29

LAB

Your practical exercises for this
module:

It is time again to log onto the NWSTC student server (204.227.127.133) and
practice Linux commands. If you need the instructions again they can be found at the
following link:

http://www.nwstc.noaa.gov/d.train/linuxinstr.html

A couple of reminders

1. You are encouraged to EXPERIMENT in this course and try various
commands, so that you SUCCEED in the field and subsequent training.

2. DO NOT enter the commands robotically without trying to understand them in

the process. Your success at further Linux training and actual work in the field is wholly
dependent upon grasping the subject matter in this course.

http://www.nwstc.noaa.gov/d.train/linuxinstr.html

 EXAMINING FILES Pg. 30

EXERCISE 1

The following commands will have you changing your current working directory and
listing the contents of directories. (For all exercises we will present the ‘$’ character as
the only prompt; what you need to enter will be in bold; afterwhich press ‘Enter’ to
execute the command).

1. $ pwd

2. $ ls

Some of the activities require the directory "front_porch" to be
present in your home directory. So at this point if it is not
present, contact Jim Kaplafka or Dave Rowell or at the NWSTC.

3. $ cd /home

After listing the contents of your own home subdirectory, the above command moved
you to the /home directory using absolute addressing.

4. $ pwd

5. $ ls

Now return back to your own sub-directory and do the same maneuver using relative
addressing. At this point there are a number of ways to get back to your own home sub-
directory – choose any of:

6. $ cd (a cd with no other arguments/parameters supplied

always returns you back to your home directory)
-or
 $ cd ~ (same)
-or-
 $ cd yourloginname (of course substitute the literal yourloginname with
 whatever your login name actually is)
-or-
 $ cd $HOME (This uses a variable that holds the value of your
 own home sub-directory – we’ll talk about this later)

7. $ pwd

8. $ cd .. (go up one directory using relative addressing)

 EXAMINING FILES Pg. 31

9. $ pwd

Let’s go further …

8. $ cd / (all the way to the top – root)

9. $ pwd

10. $ ls

11. $ cd /tmp

12. $ pwd

13. $ cd /

14. $ cd tmp

15. $ pwd

16. $ cd ..

17. $ pwd

Let’s go home. Choose another of:

18. $ cd (a cd with no other arguments/parameters supplied

always returns you back to your home directory)
-or
 $ cd ~ (same)

-or-
 $ cd $HOME (This uses a variable that holds the value of your
 own home sub-directory – we’ll talk about this later)

19. $ pwd

 EXAMINING FILES Pg. 32

Now, use different options of ls to display file and directory information. After each
command take a moment to look over all files presented

20. $ ls –laf

Then

21. $ ls –laF

Then

22. $ ls –l

Then

23. $ ls –lat

Then

23. $ ls –latr

Then

24. $ ls –l ..

Then

23. $ ls –l /home

 EXAMINING FILES Pg. 33

EXERCISE 2 - FIND

This exercise is designed to familiarize you with use the find command and the
primaries -name, -exec, -size, and -mtime to search directories for specified file
names. As you go through this exercise don’t be concerned with learning about the files
found – the important thing is to understand what the find syntax is accomplishing.

1. $ find . (remember dot means current directory)

2. $ find /home

3. $ find ..

4. $ find /home –name yourloginname (substitute your actual login name)

5. $ find /home –name fence

6. $ find /home –name tv_guide –o –name lamp

7. $ find /etc -name fstab

8. $ find /etc –name “*tab*”

9. $ find / -name fstab –exec ls –l {} \;

10. $ find . –mtime +30 –exec ls –l {} \;

If you didn’t understand some of the find option used above, remember where you can
get help with commands – ‘man find’

 EXAMINING FILES Pg. 34

EXERCISE 3 - The cat, more, head, tail, and grep commands

Go to the living room and let’s see whats on TV in the tv_guide (file)

1. $ ls tv_guide

2. $ cat tv_guide

3. $ more tv_guide

4. $ head tv_guide

5. $ head -12 tv_guide

6. $ tail tv_guide

7. $ tail -12 tv_guide

8. $ grep Inside tv_guide

9. $ grep INSIDE tv_guide

10. $ grep inside tv_guide

11. $ grep –i inside tv_guide

12. $ grep –n Inside tv_guide

13. $ grep –ni Inside tv_guide

14. $ grep –v Inside tv_guide

15. $ grep ^2 tv_guide

16. $ grep ^20 tv_guide

17. $ grep –v ^2 tv_guide

18. $ file tv_guide

19. $ file *

20. $ file /etc

 EXAMINING FILES Pg. 35

EXERCISE 4

Okay, we’ll finish with leaving you a pair of tasks to figure out on your own (don’t worry if
you just can’t get one – but try both):

1. Use the find command to see what's cooking in the oven. Use the cat command on
the contents of the oven to see if dinner is done yet.

2. From your $HOME directory, use the find command to display only the directories
under your home directory. Search your home directory using relative addressing (.)
and the "-type" option to the find command.

END EXERCISES

 EXAMINING FILES Pg. 36

The commands used in the module are of a very basic nature. They may indeed be
quite enough to get your through many if not all simple operations. But Linux has a
great many tools and features, and we’d be remiss if it wasn’t suggested that you look
into a few more related commands, which may serve you well in later Linux work or
courses…

A little further research via the ‘man’ pages or an internet search on the
follow Linux commands would be well worth the effort: du, ln, file, diff, awk and sed

End

This is the end of this module. At this time you should
proceed to module 3.

